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On the Legendre map in higher-order field theories 

D J Saunderst and M Crampin 
Faculty of Mathematics, The Open University, Walton Hall, Milton Keynes 
MK7 6AA, UK 

Received 1 4  November 1989 

Abstract. We show how the construction of a Cartan form in higher-order field 
theories defines a Legendre map, and how the regularity of this map may be described 
in terms of a sequence of maps between ‘intermediate phase spaces’. We also show 
how semi-holonomic jets are important in this context,: they allow the definition of 
regularity to be applied without ambiguity t o  the Lagrangian itself, and they pennit 
the specification of a unique Cartan form, Legendre map and covariant phase space 
for secon&order Lagrangians. 

1. Introduction 

Over the past decade there have been many studies of the global higher-order calculus 
of variations in several independent variables. These studies have usually been set in 
the context of jet bundles. Their objectives have been to  construct Euler-Lagrange 
equations for critical sections; to  obtain Cartan forms, for use in the first variation 
formula (the formula corresponding to  the classical ‘integratsion by parts’ procedure 
for obtaining Euler-Lagrange equations); and to  find Legendre maps, which-with 
a suitable definition of regularity-will permit the Euler-Lagrange equations to  be 
recast in a first-order Hamiltonian format. The continued interest in the problem 
indicates that  the task is by no means straightforward, particularly if the resulting 
constructions are supposed to  reduce to the standard, well known objects in the case 
of a single independent variable. While a unique formulat,ion of the Euler-Lagrange 
equations can be found, and a Cartan form always exists, the latter will in general 
not be unique if the order of the variational problem is greater than two, and if there 
is more than one independent variable (the case of second-order problems is rather 
special, and is discussed in a separate section below). As far as Legendre maps are 
concerned, there still seems to  be no general agreement on a suitable definition. 

The  main approach to  the global problem of finding these objects has been to  
provide a construction for a Cartan form, and several different techniques have been 
employed for this. One, used notably by Krupka (1987), has been t o  define a class of 
differential forms (‘Lepagean forms’) which satisfy certain properties; if a Lagrangian 
is equivalent (in a precise sense) t o  one of these Lepagean forms then the equivalence 
corresponds to  the first variation formula, and the Lepagean form may be taken as a 
Cartan form. The construction of a Lepagean equivalent may be carried out locally, 
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using coordinates, and a global equivalent may be constructed by patching together 
the local forms using a partition of unity. 

A second technique has been to reduce the problem to first order, by considering 
all except the highest-order derivatives as dependent variables in their own right. 
This has been done in several different ways. Kuperschmidt (1980) gave a global 
construction of a Cartan form by using repeatedly a version of this technique (see also 
Saunders 1987, 1989b). Aldaya and De Azcbrraga (1980) considered the problem in 
terms of constraints and Lagrange multipliers, although there seem to be some hidden 
assumptions in their work. Gotay (1989) has proposed a setting for these constructions 
(including a Legendre map) which will form the basis of our own development later 
in this paper. 

A third technique has been to use connections, notably in the work of Garcia and 
Muiioz (1983) and of Ferraris and Francaviglia (1983). With this additional data, it 
is possible to  define a unique Cartan form. The works cited use pairs of connections, 
although Kolbi (1984), in a paper employing yet another method of constructing a 
Cartan form, has shown that a single connection is adequate for making a unique 
choice of such a form. Similar to the use of connections has been an approach (de 
Le6n and Rodrigues 1989) where the independent variables are assumed to be taken 
from E%", rather than from a more general manifold: use of the standard coordinate 
system in R" then amounts to the specification of a connection. 

The purpose of this paper is to show how the construction of a Cartan form by 
the technique of reduction to first order may be used to give definitions both of a 
Legendre map, and of regularity. Since the definitions reduce to the standard ones 
in the case of a single independent variable, we hope that they will be accepted in 
the present context. Our new results arise from the use of semi-holonomic jets, which 
are derived from the Spencer cohomology of jet bundles (Modugno and Mangiarotti 
1983, Pommaret 1984). These are used to make a unique choice of Cartan form in 
second-order theories, and to provide an unambiguous definition of regularity: they 
correspond to  the quasisymmetric operators of Kolzii (1984). We also give a geometric 
decomposition of the Legendre map as a sequence of maps, following a technique 
proposed by Gricia et a1 (1989) for the one-dimensional case. This decomposition 
allows us to  express our regularity condition as a set of several conditions, and in 
coordinates these just correspond to the conditions given by Shadwick (1982). 

The layout of this paper is as follows. In section 2 we describe some constructions 
involving affine bundles and jet bundles: wherever notation is not described explicitly, 
we follow that of Saunders (1989a). In section 3 we review the first-order theory, 
following Cariiiena e l  al (1989) and in section 4 we introduce the higher-order theory. 
Section 5 contains our definition of regularity, and in section 6 we describe some special 
aspects of the second-order case. 

2. Affine bundles and jet bundles 

Let A be an n-dimensional affine space, modelled on the vector space V .  Since the 
real numbers R form an affine space the set At of real-valued affine functions on A 
may be given the structure of an affine space of dimension (n + 1). If R is regarded 
as a vector space then At has a distinguished element (the zero function), so it may 
also be regarded as a vector space. Some authors call At the dual of A; we shall, 
however, prefer to call At the ettended dual of A ,  and reserve the term 'dual' for 
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the n-dimensional affine space A* = At/AC, where A' is the affine subspace of At 
consisting of the constant functions. Since A* also has a distinguished element, namely 
the equivalence class of constant functions, it too may be regarded as a vector space, 
and is then canonically isomorphic to  the vector space V' dual to V .  Note that,  in 
general, A' does not have a distinguished complement in At .  

Similar constructions to those just described may be applied fibrewise in the con- 
text of affine bundles, and we shall be concerned in particular with those jet bundles 
which have an affine structure. If ( E ,  A ,  M )  is a bundle (with total space E ,  orientable 
base space M and projection A )  then its kth jet bundle will be written as ( J k n ,  irk, M ) .  
For each IC the bundle ( J ' A ,  A , , ~ - ~ , J ~ - ' A )  will be an affine bundle. Furthermore, on 
taking repeated jets, we find that ( J ' A , - ' ,  ( A ~ - ' ) ' , ~ ,  J ' - ' A )  is also an affine bundle, 
and that the canonical injection L ~ , ~ - ~  : J k r  - J1rk-' defines a morphism of affine 
bundles over Jk-'a.  We remark for later use that the vector bundle corresponding 
to ( J 1 ~ k - l r ( ~ k - l ) l , O r  J ' - 'A)  has total space n;-'T*M @ VA, - ' ,  where Vx, - ,  is the 
sub-bundle of TJk-'r containing vectors vertical over M .  We shall also consider the 
manifold J k r ,  which is defined to be the submanifold of J'n,_, where the two maps 
L ~ , ~ - ~ o ( ~ T ~ - ~ ) ~ , ~  and j1rk-l,k-2 from J'x,., to J ' A , - ~  are equal. This, too, is fibred 
over J k - ' n ,  and defines a third affine bundle ( J ' A ,  (xk-l) l ,o ,  J"-'A). We then have 
the relations 

h 

h 

and the three manifolds are said to contain holonomic, semi-holonomic and non- 
holonomic jets respectively. 

We shall normally take a fixed volume form R on the base space M ,  and choose 
coordinates zi such that R may be written as d m z  = dz' A . .  . A dmz;  we shall also 
write dm-'zi for the contraction a/axiJ dmz.  If adapted coordinates (z i l  u a )  are 
chosen on the total space E ,  then ihe induced coordinates on J k r  are ( z i ,  U ? ) ,  where 
I is a multi-index satisfying 0 5 111 5 k. The induced coordinates on J 1 n k b l  are 
(zi lucj,ucj, i)  where now I satisfies 0 <_ ( I (  5 k - 1. The submanifold J k r  is defined 
locally by the equations 

h 

u?,i = U?+', 

for 0 5 111 5 k - 2 ;  the submanifold L ~ , ~ - ~ ( J ~ A )  is then defined by the further equations 

u?,i = u?,j 

whenever 111 = /JI  = IC - 1 and I + l i  = J + lj. In coordinate representations, we 
shall generally use the same symbol to represent a function or form, and its pull-back 
to a higher-order jet manifold. 

It is important to note that,  in general, L ~ , ~ - ~ ( J ~ A )  does not have a distinguished 
complement in J ' i r k - , .  In contrast, however, L ~ , ~ - ~ ( J ' A )  does have a distinguished 
complement in the semi-holonomic manifold Jkr .  To describe this complement ex- 
plicitly, let 6 : A T * M  @ SqT*M - Art'T*M @ Sg-'T'M denote the Spencer 
coboundary operator. This is the vector bundle morphism induced by the inclusion 
map SqT*M - T*M @ Sq-'T*M. At each point p E M this morphism may be 
written in coordinates as 

6(dzi' A . . . A dzir @ dz'), = 

h 

I(j)(dzJ A dzil A . . . A dt'? @ dzJ), 
J + l , = I  
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where I ( j )  represents the number of occurrences of the index j in the multi-index 
I ;  the sequence formed by successive maps 6 is exact. We shall be interested in the 
particular map 6 : T*M 8 Sk- 'T*M - A 2 T * M  €3 S k - 2 T * M ;  if we consider the pull- 
backs of the domain and codomain bundles to Jk- 'n ,  and take the tensor product of 
the induced map with the identity on T ; - ~ , ~ ( V ~ ) ,  we obtain a map 

h 

J k x  Y J k n  x J k - l z  Im(6) 

h 

and we shall let r k  : J k n  - J k n  be the corresponding projection. Note in particular 
t ha t ,  when k = 2, the exactness of the Spencer sequence implies that  Im(6) is the 
whole of n; A2T*M 8 T ; , ~ V T .  

3. The first-order theory 

Let L : J'n - R be a Lagrangian. The Cartan form of L may be defined to  be 
the m-form 0, on J'n given by the equation 0, = S, J dL + LnTR, where S, is the 
vertical vector-valued m-form on J 'n  corresponding to a given volume form R on M .  
In coordinates 

BL 
0 - -(du" - UpdxJ) A dm-'X; + L d m z .  

- auq  

The Cartan form satisfies the first variation formula 

E(dL) = n;,ldL A n;R + dhOL 

where E(dL) denotes the Euler-Lagrange form 

E(dL) = E - LE) du" A dmx.  ( Bu" dxi Bur 

The  set of points in J2n  where E(dL) vanishes is called the Euler-Lagraiige manifold 
for L ,  and if q5 is any critical section for L then j2q5 must take its values in this 
manifold. 

In order t o  construct a Legendre map, we may use the theory of affine duals as 
in (Carifiena et a1 1989). This theory involves the affine bundle (J'n, T ' , ~ ,  E ) ,  its 
extended dual bundle (J 'n t ,  ~ f , ~ ,  E ) ,  and its dual bundle ( J 'n ' ,  n;,,,, E ) .  We shall 
write p : J'nt - J1n* for the canonical projection from the extended dual to  the 

J'nt, and (xi,uQ,p;) be the corresponding coordinates on J 1 x * .  
For each point a E E ,  the fibre (J'n), is an affine space, and we shall denote the 

restriction of L to  this fibre by La .  If jjq5 is any point of J'x, the differential dL,(,) 
may then be evaluated a t  jjq5 to give a real-valued affine map on the fibre ( J ' T ) ~ ( ~ ) .  

dual, so that T ; , ~  o p  = K ~ , ~ .  t We shall let ( z ' , u * , p , p ~ )  be the induced coordinates on 
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It follows that this map dL,(,) I j:s is an element of the extended dual space ( J ' s ) ~ ( ~ ) ,  

and we shall denote the correspondence J'T - J ' n t ,  $4 - dL+(p)ljk+ by Leg,; 

the composition p o L e k w i l l  be denoted leg,. (In Cariiiena el 01 1989, these two 
maps were denoted by 3 L  and F L  respectively.) In coordinates, we have for Leg, 

a L  p', o LegL = - 
auq 

and for leg 

We may use these relationships to define local momentum functions on J'a: we shall 
set PA = p', o LegL and P = p o Leg,, so that we may rewrite the coordinate 
description of the Cartan form as 

0, = PLdu" A dm-lzi  + P d m z .  

The reason for adopting this terminology is that each of the maps Leg, and leg, 
has some claim to be called the Legendre map for L. On the one hand, the manifolds 
J ' x  and J 1 x *  have the same dimension, and the usual condition for regularity in 
first-order field theories, det a2L/auq auf )  # 0,  corresponds to the map leg, being 
a local diffeomorphism; we may also say that the Lagrangian is hyper-regular if leg, 
is a global diffeomorphism. In these circumstances, it is reasonable to call leg, a 
Legendre transformation. We may define a Hamiltonian system on J ' x *  as a section 
h of the bundle ( J 1 x t , p ,  J 1 x * ) ,  so that H = p o h  is a local Hamiltonian function on 
J ' T * ,  and then a hyper-regular Lagrangian induces a bijection between solutions of 
the Euler-Lagrange equations, and solutions of Hamilton's equations. 

On the other hand, the map Leg, has a close connection with the Cartan form 
0,. This arises because the volume form 52 defines a natural identification of the 
dual bundle J 1 x +  with a bundle of m-covectors over E ,  namely the sub-bundle of 
AmT*E containing those m-covectors 0 satisfying i t i ,O = 0 whenever both the vectors 
[, 71 E TE are vertical over M .  In coordinates, such an element 0 would be written as 

( 

0 = 0:d.u" A dm-'zi + Q0dmz. 

The correspondence between this bundle of m-covectors and J ' x t  is then given in 
coordinates by letting O(jk4) = 6huy(j,'4) + Bo whenever 0 and jb4 project to  the 
same point 4(p) of E .  This identification of J ' x t  as a bundle of m-covectors means 
that it carries a canonical m-form 0,  whose value at  8 E J'nt is just the pull-back by 
T ! , ~  of 0 from E to J ' x t :  in  coordinates, 

0 = pkdu" A dm-'zi + p d m z .  

It is clear from this coordinate description that the Legendre map and the Cartan 
form are related by the formula 0, = Leg>@. Indeed, since 0, is semi-basic over E ,  
it may be considered as an 'm-form along that is, a map assigning m-covectors 
on E to points in J'x-in other words a map J ' x  - J 'n t .  With this interpretation, 
the Cartan form OL and the Legendre map LegL are not merely closely related: they 
are, in fact, identical. 
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4. The higher-order theory 

Let L : J k n  - R be a kth-order Lagrangian. By analogy with the first-order theory, 
one objective of the higher-order theory is t o  construct a Cartan form and an Euler- 
Lagrange form so that the first variation formula 

E(dL) = T;k,kdL n;kR + dh0, 

will hold. Most of the published work on this problem agrees that there is a unique such 
Euler-Lagrange form, whereas (in the absence of additional data) there is normally 
a lack of uniqueness in the Cartan form. In section 6 we shall describe an explicit 
construction of this formula in the second-order case; for the moment, we shall simply 
repeat the standard results. The coordinate representation of the Euler-Lagrange 
form is 

and the representation of any Cartan form is 

k-1  

8, = P,'lidu? A dm-lzi  + P d m z  
1I1=0 

where 

k-1  

P = L dmz  - uFtl, P,'>i 
II(=O 

where the local momentum functions PLii satisfy 

for 111 = 6 - 1 and 

for 0 5 111 < k - 1, and where the functions Q2i satisfy CI+l,=J Q2i = 0 for each 
multi-index J .  The functions Q:* are in general not determined by the Lagrangian 
L, and give rise to  the lack of uniqeness of the Cartan form. 

The main constructions in this paper involve a Legendre map corresponding to 
a Cartan form e,, and we shall define such a map by analogy with the first-order 
theory. Since 0, is defined on J2k-*n  and is semi-basic over J k - l n ,  we may regard it 
as a map from J2"-'n to J'nl-, fibred over Jk- 'n ,  and we shall denote this map by 
Leg,; this will be the map which we shall call the Legendre map for L. In a similar 
way, we shall denote the composite of Leg, with the projection J'TL-~ - J ' T ; - ~  
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by legL. The lack of uniqueness of the Cartan form will obviously carry over into a 
lack of uniqueness of the Legendre map. 

Although we shall not repeat the explicit construction of a Cartan form for L, it is 
nevertheless important for us to explain the first stage of its construction, as we can 
describe a technique whereby those non-symmetric quantities Q2i with 11) = k - 1 
may be chosen to be zero. We shall use the method of reduction to first order, and 
assume that there is a first-order Lagrangian : J1nk-l  - R satisfying L ; , ~ - ~ E  = L. 
We may then apply the first variation formula for L ,  giving 

as an (tn + 1)-form on J2nk.,. Now the pull-back i;,k-IE(di) is semi-basic over 
Jk- ln l  and so a version of the first variation formula may be applied to continue this 
process, finishing with a form semi-basic over the total space E ;  the Cartan form for L 
is then the sum of the various 'partial Cartan forms' constructed using this procedure. 
The point to note is that the non-uniqueness in the Cartan form arises from the need 
to extend forms defined on holonomic manifolds Jktr - ln  which are semi-basic over 
J k - r t l  T (for 1 5 r 5 k) to forms defined on non-holonomic manifolds J 2 r - 1 ~ k - r  
which are semi-basic over J ' T ~ - ~ ,  and that the only occasion where there may be 
non-symmetric terms added to the highest-order derivatives 8L/aulQ (with 111 = k) 
occurs in the case where r = 1: that is, where dL is extenkd to d i .  We may now 
take advantage of the existence of a complement to J k n  in Jkn,  and specify that any 
extension 1 should satisfy ilJ~x = T;L, so that its values on the semi-holonomic 

manifold J k r  are determined. From the coordinate relationship 
h 

k = T i * U Q  
( ) + 1 

with 111 = k - 1 we find that 

The coordinate expression of therefore becomes 

so that Q2i = 0 for 111 = k- 1: in other words, the highest-order momentum functions 
pLri are totally symmetric. 

5 .  Regularity 

In first-order theories, a Lagrangian is called regular if the corresponding Legendre 
map legL : J'T - J1n* is a local diffeomorphism. A similar definition is used in 
higher-order theories with a one-dimensional base manifold. The complication when 
d imM > 1 and k > 1 is that the map legL : J Z k - ' r  - J ' T ; - ~  can be neither locally 
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injective nor locally surjective. It is, nevertheless, possible to define the regularity of 
a higher-order Lagrangian L in terms of the rank of its Legendre map, and we shall 
see that this is independent of the choice of extension L.  

Our definition will be that the Lagrangian L is regular if, at  each point of J Z k - ' n ,  
the rank of the Legendre map legL equals dim J k n  + dim J k - ' n  - dim E:  we shall 
denote this latter number by N ( E ,  M ,  k). Note that, when k = 1, N ( E ,  M ,  k) equals 
both dim J ' n  and dim J ' n ' ,  and that when d imM = 1 it equals both dim J Z k - ' n  
and dim J ' n z - , :  in both these cases, therefore, our definition reduces to the standard 
one, and then N ( E ,  M ,  le) is actually the dimension of the phase space. I t  turns out 
that for second-order field theories it is also possible to define a canonical phase space 
whose dimension is N ( E ,  M ,  2), as we shall show in section 6. In general, however, it is 
not possible to  express N ( E ,  M ,  k) as the dimension of a canonically defined covariant 
phase space, because the definition of such a space depends on the choice of Legendre 
map. 

We have been led to  this definition of regularity by studying the generalisation, to 
d imM > 1, of a construction introduced by GrAcia et  al (1989) in the one-dimensional 
case. To demonstrate how our definition arises, we shall suppose that a Lagrangian L 
is given, and that a Cartan form 0, and associated Legendre map Leg : JZk- ' ir  - 
J'rL-'  have been chosen. We shall then decompose the map LegL into a sequence 
of maps La : K ,  - K,+' for 0 5 s 5 k - 1, where each A', is a submanifold 
of ~ 2 k - 1 - 8  n X J k - l r  J ' K L - ~ ,  and where for each s the map La introduces the local 
momentum functions Pili where (11 = s. The first step in this decomposition will 
be to  give a definition of K 3 ,  and for this we shall generalise the technique used 
by Grkcia et al (1989). We shall need to use certain vector-valued l-forms S, on 
the jet manifold J k - ' x  which generalise the almost-tangent structures on higher- 
order tangent manifolds: these may be defined intrinsically (Saunders 1987) and in 
coordinates are written as 

( J  + K + l,)! i31Jlwi a k - 2  

a l J ( d u g  - ug+1,dx') 8 ( J  + l,)! K! au?+K +1, 
s w =  

JJ+KI=O 

where w = wjdxJ is a closed l-form on the base manifold M .  We shall use the 
operators S, to construct two families ofm-forms on J ~ ~ - I - , T  x J k - l *  J ' X L - ~ ,  where 
each family is parametrised by an s-tuple ( U ' ,  . . . ,us) of closed l-forms on M ;  we shall 
let K ,  be the submanifold where, for every such s-tuple, the corresponding two m- 
forms are equal. The construction involves the repeated contraction of vector-valued 
l-forms S, with two given m-forms; although the m-forms to which we shall apply the 
operators S, are defined on J Z k - ' n  and J 'a l - ,  respectively, they are both semi-basic 
over J k - ' n ,  and so the pointwise operation of contraction may be considered to be 
taking place on Jk- '  n. 

The first family of m-forms will be constructed from the canonical m-form 0 on 
J ' r l - ' .  The contraction S,, J . . . J S,. J 0 is another m-form on J 'nL- , ,  and this 
may be pulled back by the fibre product projection to an m-form @ [ U ' , .  . . , w s ]  on 

The second family of n-forms will be constructed from the Cartan form 0, on 
J 2 k - ' n .  The contraction S,, J . . . J S,, J 0, is another m-form on J Z k - ' n ,  and it is 
semi-basic over J z k - l - s n  because 8, is semi-basic over J k - ' n  and the effect of each 
contraction with S,, is to  reduce the order of each derivative differential du? by at 

~ 2 k - 1 - 8  X J k - l r  J1?rL-l. 
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least one. Indeed, this m-form is actually basic over J z k - l - a ~ ,  because the coefficients 
which involve the s highest-order derivative coordinates are attached to  the s lowest- 
order derivative differentials, and these vanish after contraction with S,, J . . . J S,. 
(the coefficients in the representation of S,, are of course pulled back from M ) .  It 
follows that  the m-form S,, J . . . J S,, J 0, is projectable onto J 2 k - 1 - - s ~ ,  and the 
result may be pulled back by the fibre product projection to  an m-form @,[U' , . . . , U ' ]  

Now define K ,  t o  be the subset of points a where f3[w1, . . . ,wa] ,  = e L [ w l  , . . . , w' ] ,  
for every s-tuple (wl,. . . ,us). We claim that ,  for 1 5 s 5 k - 1, K ,  is just the 
submanifold given in coordinates by p i '  = PL!' for s 5 111 5 k - 1, where p;' are the 
coordinate functions pulled back from J ~ T L - ~ ,  and PLpi are the pull-backs of the local 
momentum functions described in section 4.  To see this, note that  

1 t  
T x J k - l r  J T k - 1 .  on ~ 2 k - 1 - a  

k - 1  

0 = p:'duy A dm- lz i  + p d m z  

so that 

E -  1 

k- 1 .~ - 
+ x p ; ' F t ( u 1 , .  .. , w ' ) ( d u ~  - ug t lkdzk)  Adm- lz i  

IIl=s+l ( t )  

where the sum indicated (*) is over all J such that  J + lj, + . . . + lj, = I (so that 
IJI 5 k - 1 - s), where the sum indicated (t) involves the multi-index I< satisfying 
IK(1 < k - 1 - s, and where the functions F t  involve the coefficients of the w' and 
their derivatives. On the other hand 

k - 1  

0, = P,*'du? A dm-'zi  + P d m z  
111=0 

so that  

k -  1 

where (*), (t) and F t  have exactly the same meaning as before. If each wa is taken 
to  be locally equal to  one of the coordinate functions dz' then all the functions F t  
vanish; by considering all possible combinations of the dz' we see that p i '  = PLl' for 
s 5 111 5 k - 1 a t  every point in K,. It is then clear that  considering any other s-tuple 
(w' , . . . ,ua) introduces no further restrictions because the functions F t  and the sum 
(t) are the same for both the m-forms, and only involve those p i '  and PL>' which are 
already known to be equal. 
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We still have to  consider the cases s = 0 and s = k. When s = 0 it  is clear that  
KO is given by p:j = PLt' for 0 5 I Z I  5 k - 1, together with the further restriction 
p = P ,  and this submanifold is just the graph of LegL in J Z k - ' x  X J k - l *  J x ~ - ~ ,  and 
so is diffeomorphic to  J2"-'a. When s = k both the m-forms vanish, so that is 
the whole of Jk- ' l r  X J k - l r  J ' n L - , ,  which of course is diffeomorphic to  J'T~.~. 

We shall now define the map L ,  : K ,  - K,+' to be the restriction to K ,  of the 
canonical map 

1 t  

Of course we must check that this restriction does actually take its values in Ks+l ,  but 
this is clear because ? r 2 k - 1 - s , 2 k - 2 - s  simply forgets the derivative coordinates of order 
2k - 1 - s, and these coordinates only appear in the momentum functions PLvi with 
111 5 s and so are not involved in the constraint equations for K,+l. We therefore 
have the sequence of maps 

J2"-'r Z K o 4 K l - .  L . . L k - I  - A k  ,- % J 1 t  K ~ - ~  
L1 

and it is evident from the coordinate representation that 

L k - l  0.. . o L o  = LegL 

Finally we observe that this sequence of submanifolds and maps is projectable in its 
entirety from J Z k - l - , n  x k Pxf i - ,  to ~ z k - l - 8 "  x J k - l *  J'";- ,:  this is because 
none of the submanifolds K ,  (1 5 s 6 k) and none of the maps L ,  (0 5 s 5 k - 1) 
involves the coordinate p on J ' T L - ~ .  We shall let the projected sequence be 

~ 2 k - 1 "  - I k - I  - - l ? o s K l - .  . . - K k  E J'ri-, 

and now 

l k - l  0.. , o I ,  = legL. 

Ifwetakecoordinates(z',u~,p$')onl?,,withO 6 IJI 5 2k-1-sand0 5 11) 5 s-1,  
then 

2' 0 I ,  = 2' 

Pa 0 1, = P,' 

U J  P 01, = U J  P 0 5 I J I 5 2 k - 2 - s  
0 5 111 5 s -  1 I,i I i  

the only non-trivial effect of 1, may be seen in the functions PLii = p 2 i  o 1, with 
IJI = s, and it is clear that the rank of 1, depends only on the rank p ( s )  of the matrix 
aP,'ii/du$ with 111 = s, I JI = 2k - 1 - s. Furthermore, the rank of legL may easily be 
seen to equal dim J k - l n  + E:,,' p ( s ) ,  so that legL has maximal rank exactly when 
each component map 1, has maximal rank. In the special case of a one-dimensional 
base manifold M ,  we find that all the ranks p(s )  are equal, so that there is really 
only one condition to be satisfied, whereas in the more general case the ranks of the 
component maps may be different. 
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It is at this stage of the argument that we make use of the semi-holonomic jet 
manifold. If we examine the dependence of the functions PLvi on the coordinates 
U! with the given values of 111 and IJI, we see that this dependence can only arise 
by taking ( I C  - 1 - $)-fold total derivatives of the highest-order momentum functions 
P,"li with IKI = k - 1, and we have seen that these may be determined uniquely 
by extending the Lagrangian L to T ~ L  : Jkn - W. The components of the matrix 
t l P ~ ~ i / d u $  are then just symmetrised combinations of the components of the Hessian 
matrix of L ,  and this is the form of the regularity condition given by Shadwick (1982). 

The crucial consequence of this use of semi-holonomic jets is that the rank of the 
map leg no longer depends on any of the choices made in the construction of the 
Cartan form e,, so that we may speak without ambiguity of a regular Lagrangian as 
one whose Legendre map legL has maximal rank. Indeed, we can even calculate what 
this maximal rank should be: it must be the same as the maximal rank of a Legendre 
map where all the local momentum functions Plii are totally symmetric. The number 
of such symmetric functions Pi+', with 0 5 111 5 IC - 1 equals dim J k n  - dim E ;  since 
the map leg is fibred over J'-'n, it must take its values in a manifold of dimension 
no greater than N ( E ,  M ,  h )  = dimJ'-'a + dim J'n - dim E .  Consideration of the 
example L = Clrl=' C",=,(U?)~ shows that this rank can actually be achieved. We 
see that the Legendre map legL for a regular Lagrangian is a submersion onto its image 
(although this is not a sufficient condition for regularity), and so legL will admit local 
sections. If, for a regular Lagrangian, there is a Legendre map legL which admits a 
global section \k, we shall say that L is hyper-regzllar; the composition LegL o @ will 
then be a global section of the restriction of the bundle J ' T L - ~  - J'ni- ,  to  the 
covariant phase space Im(legL) and so will define a Hamiltonian system. Since the 
map legL is not injective, there will generally be many sections \k passing through 
any given point of J 2 k - 1 n ,  and so the correspondence between the Euler-Lagrange 
structure and the Hamiltonian structure will in general not be unique. 

h 

6. The second-order case 

According to  the description of the Cartan form and Legendre map given section 4,  
the case of second-order field theories would seem to be subject to the same lack of 
uniqueness as any other higher-order case. There have, nevertheless, been several 
demonstrations that in second-order field theories a canonical choice of Cartan form 
may indeed be made, and we shall show in the present section that this is another 
consequence of the use of semi-holonomic jets. We shall also be able to give an explicit 
description of the covariant phase space. We shall not use multi-index notation for 
the second-order theory, but will instead let coordinates on J 2 n  be (xi, u Q ,  up, U;) 
(with ujq. = U;) and those on J'n, be ( Z ~ , U ~ , U ~ , U ~ , U ~ ~ ) ,  with the appropriate 
modifications for the other manifolds which we shall need. 

Given a map 1 : J1nl - R which extends a second-order Lagrangian L : J2n - 
R, the local momentum functions for L are given by 
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so that  the Cartan form for L is 

A dm-'xj + E d m x  

and the Euler-Lagrange form is 

By writing the equation dL = r;,,dL in coordinates and equating coefficients, we find 
tha t ,  on the holonomic manifold J 2 x ,  

- 8 L  = (&+E) 
a U p  aup  au: 

where n ( i j )  denotes the number of different indices represented by i and j ,  so that  

Now a t  each point $4 E J 3 x ,  the pull-back L;,1E(dL)j:4 is an ( m +  1)-covector on 
J'n which may be expressed as ~ A ( r ; f l ) ~ ; ~ ,  where q E J'n. The cotangent vector 
77 is of course not unique, but the difference between any two such cotangent vectors 
is horizontal over M ;  it follows that J 9 E AmTj' J'n does not depend on the 
particular representative 7. We shall let S,(E(dL)) denote the m-form constructed 
by this method; it is an m-form on J 3 x  semi-basic over E ,  and in coordinates may be 
written as 

:+ 

P 

If we set 
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then in coordinates 

If we allow arbitrary extensions L of L then this expression is not defined uniquely, 
for the derivatives 8L/13uiqj do not define unique functions on J3n. We may, how- 
ever, specify that any extension L should satisfy L~,T~ = T; L ,  where the coordinate 

description of r2 : J 2 n  - J 2 r  is 

With this understanding, we find that 

1 d L  - - -- - aL 
au,gj au; 

and so we may make a canonical choice of Cartan form with coordinat,e representation 

1 d L  
+--(du: - urkdxk) Adm- ' t j  + L d m x .  

n ( 2 3 )  au; 
Since the Legendre map legL : J3n  - J1r: corresponding t o  this canonical 

choice of 0, satisfies 

we may use this condition to  determine the covariant phase space for L .  Recall that  
the complement of in J 2 n  is r7A2T*M@ni,oVr, and that this may be regarded 
as an affine sub-bundle of J ' r l  over J'n.  The fibre-affine maps J'rl - R which are 
constant on the fibres of this sub-bundle define a sub-bundle ( r; A2T*M @ X ; , ~ V T ) ~  of 
J1ni, and this construction passes to  the quotient to give a sub-bundle (r;A2T*M 8 
T ; , ~ V T ) O  of J's;; the notation is chosen because this vector bundle is canonically 
isomorphic to  the annihilator of n;A2T*M @ r;,oVr in (r;T*M @ V r l ) = ,  the dual 
of the vector bundle associated to J'nl. It follows from this description that the 
total space of (n;A2T*M @ i ~ ~ , ~ V n ) ~  is the submanifold of J'n; defined locally by 
pkJ = &', so we see that legL takes its values in this manifold. Furthermore, the 
dimension of this manifold is ( m  + n + mn) + (mn + m2n - fmn(m - l)) ,  which equals 
N ( E ,  M ,  2) = dim J 2 r  + dim J 'a - dim E ;  it follows that (n;A2T*M @ T ; , ~ V T ) ~  may 
be regarded as the covariant phase space for second-order Lagrangians. 

h 

. .  . .  
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